Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 290-298, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005279

RESUMO

Osteoporosis (OP) is a common bone disease affecting the quality of life and causing huge medical burden to the patients and society. The occurrence of OP is mainly caused by excessive bone resorption and insufficient bone formation, which are directly influenced by external calcium ion balance. Calcium imbalance can impair bone integrity, reduce the calcium supply to the bone, and lower the calcium content in the bone, thus triggering OP. Drugs are the main anti-OP therapy in modern medicine, which, however, may cause adverse reactions and drug dependence. Chinese medicines have good clinical effects and high safety in treating OP, being suitable for long-term use. Recent studies have shown that Chinese medicines can alleviate estrogen deficiency, regulate bone cell and calcium metabolism, which is crucial for the formation and development of OP. The transient receptor potential cation channel superfamily V members 5 and 6 (TRPV5 and TRPV6, respectively) affect bone homeostasis by mediating the transmembrane calcium ion transport in the intestine (TRPV6) and kidney (TRPV5). Therefore, TRPV5/6 is one of the key targets to understand the anti-OP mechanisms of the effective parts of Chinese medicines, which is worthy of further study. This paper summarizes the research results about the anti-OP effects of Chinese medicines in the last two decades, especially the mechanism of regulating calcium metabolism, aiming to provide new ideas for the basic research, clinical application, and drug development of OP treatment.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 254-259, 2023.
Artigo em Chinês | WPRIM | ID: wpr-961706

RESUMO

Zhishi Xiebai Guizhitang is a classical prescription for the treatment of chest impediment with the method of warming Yang. It is included in the Catalogue of Ancient Classical Prescriptions issued by the National Administration of Traditional Chinese Medicine (First Batch), with the effect of activating Yang, dissipating mass, moving Qi and resolving phlegm. Its main symptoms include chest fullness and pain, or even chest pain radiating to the back, wheezing, coughing, shortness of breath, and Qi reversal from the hypochondrium. In modern traditional Chinese medicine, Zhishi Xiebai Guizhitang is clinically used in the treatment of cardiovascular system, digestive system, respiratory system and other diseases, among which coronary heart disease, unstable angina pectoris, myocardial infarction, sinus bradycardia and other cardiovascular diseases have particularly significant effects. This paper reviewed the pharmacological studies of Zhishi Xiebai Guizhitang in the past 10 years. The results showed that each single medicine and the whole prescription alleviated the above cardiovascular diseases to a certain extent, with the pharmacological effects of improving intravascular environment, myocardial ischemia, myocardial ischemia-reperfusion injury, and myocardial hypoxia, anti-inflammation, plaque stabilisation, etc., and the pharmacological mechanism involved the regulation of relevant active substances in vivo as well as related signaling pathways and ion channels, mainly including thromboxane B2 (TXB2), prostacyclin I2(PGI2) and phosphatidylinositol 3-kinases/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathways, and ATP-sensitive potassium channels. In addition, the relationship between the pharmacological effects of some single medicines and transient receptor potential ankyrin 1 (TRPA1) has been reported that TRPA1 is a key to understanding the mechanism of Zhishi Xiebai Guizhitang in treating cardiovascular diseases, which is worth of further study.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 247-256, 2023.
Artigo em Chinês | WPRIM | ID: wpr-988203

RESUMO

Atherosclerosis is a chronic inflammatory disease caused by lipid accumulation and vascular endothelial dysfunction. The Toll-like receptor (TLR)/nuclear transcription factor-κB (NF-κB) pathway and the NOD-like receptor protein 3 (NLRP3) inflammasome pathway play a proinflammatory role, while the transient receptor potential vanilloid subtype 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) play a protective role in the occurrence of atherosclerosis. We reviewed the relevant studies published in the last 10 years. The results showed that activation of TRPV1/TRPA1 could activate endothelial-type nitric oxide synthase (eNOS) and inhibit the generation of reactive oxygen species (ROS) and cholesterol crystal (CC) to modulate the TLR/NF-κB and NLRP3 inflammasome pathways, thereby inhibiting TLR/NLRP3-mediated inflammatory response. A variety of compound prescriptions and active components of Chinese medicinal materials can activate TRPV1/TRPA1 or its downstream pathway to regulate the TLR/NLRP3 pathway in atherosclerosis. This paper introduces the mechanisms of compound prescriptions and active components of Chinese medicinal materials in regulating the TLR/NLRP3 pathway via TRPV1/TRPA1 in atherosclerosis. This review provides new ideas for the research on the interactions between Chinese medicines in the treatment of atherosclerosis and provides a new strategy for the clinical treatment of atherosclerosis with traditional Chinese medicine.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 55-62, 2023.
Artigo em Chinês | WPRIM | ID: wpr-973132

RESUMO

ObjectiveTo investigate the mechanism of Renshentang, recorded in Synopsis of Golden Chamber, in the treatment of atherosclerosis (AS) based on the autophagic effect of transient receptor potential vanilloid subtype 1 (TRPV1) on arterial smooth muscle. MethodFourteen SPF-grade 8-week-old male C57BL/6J mice were assigned to the normal group and 70 8-week-old apolipoprotein E knockout (ApoE-/-) mice were assigned to the experimental group. The AS model was induced by a high-fat diet in the mice in the experimental group for eight weeks. The model mice were then randomly divided into model group, low-, medium-, and high-dose Renshentang groups (2.715, 5.43, and 10.68 g·kg-1·d-1), and simvastatin group (0.02 g·kg-1·d-1). Drug treatment lasted eight weeks. Serum was taken and serum total cholesterol (CHO), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were measured by assay kits to observe the changes in lipid levels in mice. The aorta was stained with hematoxylin-eosin (HE) to observe the overall pathology of the aortic root and oil red O staining was used to detect the lipid deposition in the aortic plaque and calculate the percentage of the aortic root area to the lumen area. The protein expression of TRPV1, adenylate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), autophagy effector-1 (Beclin-1), and microtubule-associated protein 1 light chain 3 (LC3Ⅱ) in mouse aortic tissues was determined by Western blot. ResultCompared with the normal group, the model group showed increased serum CHO, TG, and LDL-C levels, decreased HDL-C, and increased aortic root plaque area (P<0.01). Compared with the model group, the Renshentang groups showed decreased levels of CHO, TG, and LDL-C in serum (P<0.05, P<0.01), especially in the low- and medium-dose Renshentang groups (P<0.01). Compared with the normal group, the simvastatin group and the Renshentang groups showed reduced aortic root plaque area (P<0.05), especially in the high-dose Renshentang group (P<0.01). Compared with the normal group, the model group showed decreased relative expression levels of TRPV1, p-AMPK/AMPK, Beclin-1, and LC3Ⅱ/LC3Ⅰ(P<0.05, P<0.01). Compared with the model group, the medium- and high-dose Renshentang groups showed increased relative expression levels of TRPV1, p-AMPK/AMPK, Beclin-1, and LC3Ⅱ/LC3Ⅰ(P<0.05,P<0.01). ConclusionThe anti-AS effect of Renshentang recorded in Synopsis of Golden Chamber may be achieved by up-regulating TRPV1 expression to restore the level of autophagy mediated by AMPK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA